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Figure 1: (right) Our model learns visual correspondence at the level of line-enclosed segments in the line images. (left)
Using the learned segment correspondences, our model performs colorization by propagating colors from a reference image
across a sequence of grayscale line images.

Abstract
Visual correspondence is a fundamental building block

on the way to building assistive tools for hand-drawn ani-
mation. However, while a large body of work has focused
on learning visual correspondences at the pixel-level, few
approaches have emerged to learn correspondence at the
level of line enclosures (segments) that naturally occur in
hand-drawn animation. Exploiting this structure in anima-
tion has numerous benefits: it avoids the intractable mem-
ory complexity of attending to individual pixels in high res-
olution images and enables the use of real-world anima-
tion datasets that contain correspondence information at
the level of per-segment colors. To that end, we propose
the Animation Transformer (AnT) which uses a transformer-
based architecture to learn the spatial and visual relation-
ships between segments across a sequence of images. AnT
enables practical, state-of-art AI-assisted colorization for
professional animation workflows and is publicly accessi-
ble as a creative tool in Cadmium1.

1. Introduction
Hand-drawn animation has been around for over 100

years and is one of the most popular mediums of digi-

1Download Cadmium at https://cadmium.app

tal entertainment today. Though the advent of drawing
tablets and digital software have made the process of cre-
ating hand-drawn animation substantially easier, it is still
a highly manual process that involves drawing and editing
each individual frame. Many of these tasks lie in the grey
area between repetitively algorithmic processes and artistic
choices, opening the door for new assistive tools that aug-
ment artists’ workflows.

Existing commercial tools have applied heuristic algo-
rithms in this domain with limited results, usually requir-
ing artists to work in vector format or use complex char-
acter rigging that removes the hand-drawn feel of the final
product. Deep learning approaches, on the other hand, can
act directly on top of raw pixel input but cannot scale eas-
ily to HD resolutions and fail to properly exploit the struc-
ture of hand-drawn animation drawings – specifically, the
smaller line enclosures (segments) which can be extracted
by a flood-fill or morphological algorithm.

In this paper, we focus on the task of learning visual
correspondence across sequences of raster animation line
drawings. This is a fundamental building block for build-
ing assistive animation tools for tasks such as coloring, in-
betweening, and texturing which make up a large portion
of the tedious, non-creative work in the animation pipeline.
With correspondence information an animator can color or

https://cadmium.app


texture a few frames in a sequence and propagate the col-
ors through the rest of the images, saving hours of manual
labor. New in-between frames can be generated by morph-
ing neighboring frames with correspondence information,
which can reduce the amount of line drawings needed to
make smooth looking motion.

Despite demand for a data-driven solution to the cor-
respondence problem, little progress has been made be-
cause of the difficult design requirements and lack of
available data with correspondence labels. Suitable ap-
proaches should (i) operate on raster input and scale to HD
(1920×1080) and above resolutions; (ii) produce correspon-
dences on the level of segments; (iii) be able to handle com-
plex real-world animation; (iv) be trainable using colorized
images as supervision; (v) be fast enough for interactive ap-
plications.

In this paper, we propose the Animation Transformer
(AnT) to address these issues. Unlike pixel-based video
tracking methods which suffer from the intractability of
computing attention over a large number of pixels, AnT
operates over the line-enclosed segments (see Figure 2) in
the line image and uses a Transformer-based architecture to
learn the spatial and visual relationships between segments.
By operating on this representation AnT avoids the need
to directly process HD images in their entirety and is both
compute and memory efficient, scaling to 4K images and
beyond. We optimize AnT with a forward matching loss
and a cycle consistency loss that enables it to be trained on
real-world animation datasets without full ground-truth cor-
respondence labels.

Figure 2: Given an input image I each crop Ci is obtained
by placing a bounding box around the center of each enclo-
sure of I and resizing it to a common size.

We conduct extensive experiments to show our model’s
effectiveness in a variety of settings. When trained on
ground-truth correspondence labels generated from 3D ren-
dering software, AnT demonstrates a large improvement
over a strong pixel-based baseline even after domain spe-
cific improvements are added to the baseline. When AnT is
trained solely on colorized images from a real-world anima-
tion dataset, its performance approaches that of the model
trained on ground-truth correspondence labels – showing
that AnT is not bounded by the availability of large datasets
with correspondence labels. While AnT has broad appli-
cability in animation, we highlight its potential as a creative
tool through showcasing results on guided colorization from
reference images.

2. Related work

Correspondence Matching: Our paper builds off of a
growing body of research that learns correspondence by
matching features extracted from a deep neural network
across images. A common approach is to extract high-level
activation maps from the image and match corresponding
regions in feature space. This framework has been ap-
plied to video tracking [26, 11] and exemplar-based col-
orization [15, 31] in the photo-realistic domain as well as
exemplar-based colorization in the line image animation do-
main [21, 34]. However, representations learned in this way
are inherently limited by the memory complexity of com-
puting dense pixel attention maps. Even with multi-scale
techniques [12] or local attention [11], it is computationally
infeasible to use these techniques for HD and above resolu-
tions. In contrast, our approach computes attention over the
line-enclosed segments in the images, which makes the at-
tention operation bounded by the number of segments rather
than pixels in the input image.

Research has also explored using the feature matching
framework in combination with different ways of repre-
senting image regions, such as patches [9, 2] and local de-
scriptors [18, 13]. Of particular interest to our approach is
the line of research that learns multi-view correspondence
across sketch images with local descriptors [16, 30]. How-
ever, our domain necessitates we learn correspondence at
the level of segments so that we can train on real-world ani-
mation datasets with segment-level color labels and use the
learned correspondences as an assistive tool for coloring.

Segment-based methods: Segments offer a natural way
to decompose line images into a useful representation for
learning tasks such as correspondence. Relevant to our ap-
proach is the work of Zhu et al. [36] which formulates
segment-level correspondence matching across a sequence
of images as a network flow graph problem and solves for
the global optimum using the k-shortest path algorithm with
Shape Context [1] features. Other work in this direction
adopt a similar graph matching approach and apply spectral
matching [14] and quadratic programming [19] on top of
non-learned segment features. Recent work from Dang et
al. [5] proposes using a U-Net to extract local features and
optimize for correspondence matches with a triplet loss that
minimizes the distances between matching segments and
penalizes low distances between non-corresponding seg-
ments. Similar to these approaches, AnT uses global fea-
ture aggregation across segments to learn correspondences.
However, we are the first to explore using a to aggregate
segment features and do not require ground truth correspon-
dences or hard example mining as input data.

Transformers: Transformers have been shown to be
highly effective at learning a wide range of tasks in domains
such as language modeling [25], image recognition [6], ob-



ject detection [3], and protein folding [20]. Transformers
introduced self-attention layers, which, similarly to Non-
Local Neural Networks [27], scan through each element of
a sequence and update it by aggregating information from
the whole sequence. Recent applications of Transformers
to computer vision use image patches [6, 3, 2] to break
up the image into a tractable sequence length that avoids
the quadratic complexity of computing attention over every
pixel. Sarlin et al. [18] propose using a Transformer-based
architecture to match sets of local feature descriptors where
the matching assignments are estimated by solving a differ-
entiable optimal transport problem. We design our Trans-
former architecture in a similar fashion, but use a different
matching and loss formulation to handle the fact that one-
to-none and one-to-many correspondences can occur in our
domain.

Cycle consistency: Cycle-consistency has been applied as
a learning objective for 3D shape matching, image align-
ment, depth estimation, and image-to-image-translation
[37]. In the context of temporal domains, it can be a rich
source of learning signal because the visual world is con-
tinuous and smoothly-varying. Recent work has shown that
cycle-consistency is useful for learning visual tracking in
the photo-realistic domain [11, 9] by learning to propagate
labels in a forward-backward fashion. Our work applies this
idea in the context of segment labels which allow us to train
on datasets without ground-truth correspondence labels.

Sketch-oriented Deep Learning: Our work is also tan-
gentially related to the broader area of sketch-oriented deep
learning. Research has investigated methods for a vari-
ety of tasks, such as single-image colorization from hints
[33, 29, 4], sketch clean-up [22, 23], sketch generation
[8, 7], sketch shadowing [35], and synthesis of vector graph-
ics [17].

Assistive Animation Tools: Finally, we take inspiration
from a variety of creative tools that aim to augment the an-
imation pipeline. LazyBrush by Sýkora et al. [24] paints
hand-made cartoon drawings from imprecise color strokes.
EBSynth by Jamriška et al. [10] uses patch-based synthe-
sis to paint over photo-realistic video from exemplar im-
ages with texture coherence, contrast and high frequency
details. BetweenIT by Whited et al. [28] use stroke interpo-
lation from keyframes for smooth in-betweening of vector-
ized animation. Zhang et al. [34] propose a system for col-
orizing in-between frames from line frames and colorized
keyframes using a deep neural network. This work shares
a similar goal to AnT but operates on the level of pixels
instead of segments.

3. Method

Motivation: Our goal is to estimate visual correspondence
across a sequence of animation frames at the level of the
line-enclosed segments in the line images. By using this
naturally occurring structure (see Figure 2), we learn the
spatial and positional relationships between segments; for
example, a hand will have segments for each finger which
are all connected to a segment for the palm. As the character
moves throughout the sequence, we can expect the structure
to hold; if we see several finger shaped segments we know
we will see a round palm segment or small fingernail seg-
ments nearby (see Figure 3). However, due to occlusion
and motion, a segment may completely go out of frame or
be split into smaller sub-parts in the next frame that both
correspond to the same segment in the earlier frame (see
Figure 3). Thus, we formulate AnT as a segment match-
ing problem where segments can match to 0, 1, or multiple
segments in the other frames.

Data: The architecture for AnT is motivated by the struc-
ture of data it operates on as well as the availability of two
types of labels: correspondence labels that assign each seg-
ment a consistent, unique ID throughout the sequence and
color labels that assign each segment a consistent, but pos-
sibly non-unique color. Correspondence labels offer the
cleanest, most direct form of supervision for our task; but
they come at the expense of not existing in the real-world
– in order to obtain these we use 3D rendering software to
generate the realistic looking line images with unique seg-
ment IDs (for more details see Section 4.1). On the other
hand, colorized animation is plentiful in the real-world but
offers a weaker form of supervision for our task; multiple
segments often share the same color across the sequence,
so color labels only tell the model that a segment in one
frame corresponds to something in the set of segments in
the other frame that share the same color. Our architecture
is able to operate on and learn effectively from both forms
of supervision.

Formulation: Consider two line images A ∈ RH×W×1

and B ∈ RH×W×1 which have M and N segments and are
indexed by A := {1, ...,M} and B := {1, ..., N}, respec-
tively. We extract segments from the line images using a
trapped-ball filling algorithm where each line enclosed re-
gion is a separate segment. We divide the image into a set
of smaller cropped images using the bounding box coordi-
nates of each segment and then resize each cropped image
to a smaller resolution Hc,Wc. Each segment has positional
information pi = (xi, yi, hi, wi) in the form of its bounding
box coordinates and visual information di ∈ RHc×Wc×2 in
the form of the concatenated line image and binary segmen-
tation mask crops. We refer to these features xi jointly as
the local segment features.



Figure 3: AnT Architecture. Given reference and target line images, the backbone module extracts visual and positional
information for each segment. The per-segment features are passed through a multiplex transformer architecture that aggre-
gates information across segments and frames, yielding a similarity matrix between the reference and target segments. The
final color predictions are computed via a linear combination of the color labels in the reference frame.

3.1. AnT Architecture

As shown in Figure 3, our model consists of three main
modules: the CNN backbone network to extract visual fea-
tures for each segment, the bounding box encoder to ex-
tract positional embeddings for each segment, and a mul-
tiplex transformer which learns the global structure across
segments and frames and predicts the final match matrix.

The multiplex transformer architecture is inspired by
[18] and we encourage readers to refer to the original Su-
perGlue paper for additional details. While the positional
and visual features are an important foundation for estimat-
ing segment correspondences, there are often visual ambi-
guities that arise which cannot be solved by looking at local
features alone. For example, in Figure 4 we see examples
of cases that would make matching on local features alone
impossible: an occlusion or deformation can disfigure an in-
dividual segment or there may be multiple segments such as
eyes that are indistinguishable from one another if viewed
in isolation. Additionally, animation line drawings often
contain groups of neighboring segments that pertain to the
same semantic part but are split into multiple segments be-
cause the artist has drawn an object in the foreground whose
contour lines intersect with that an object behind it (see Fig-
ure 5).

These challenges motivate the need for an architecture
that can aggregate global feature information across seg-
ments within the individual images as well as integrate seg-
ment information across images. We describe this in more
detail in the following sections.

CNN Backbone: Starting from the cropped images
RHc×Wc×2, a conventional CNN backbone generates high-
level activation maps for each segment crop. A 1 × 1 con-
volution squashes the spatial dimensions of the high-level

Figure 4: An example of occlusion in our evaluation data.
We show results of our model’s performance on this se-
quence in the middle row.

Figure 5: An example of grouping in animation: if you
zoom in on the image on the left, you will see many smaller
segments generated from the shadow pass that pertain to the
same semantic group.

activation maps yielding D dimensional feature vectors. In
our experiments we use D = 256 and Hc,Wc = 32.

Positional Encoder: We combine the visual features from
the CNN backbone with positional information from the
bounding box coordinates to get the final local features xi

for each segment. We embed the bounding box coordinates
into a D dimensional vector with a multilayer perceptron



(MLP) and add these into the visual features:

xi = CNNenc(di) + MLPenc (pi) . (1)

Unlike [18], we train both the CNN backbone and positional
encoder end-to-end with the multiplex transformer.

Multiplex Transformer: As in [18], we adopt a multi-
plex transformer architecture, which has two modes of in-
formation aggregation: it connects segments to all the other
segments within the same image (self-attention) and con-
nects segments to all the segments in the other image (cross-
attention). In self-attention, features are aggregated at the
level of segments within each individual image yielding fea-
tures zℓA, z

ℓ
B for input images A,B, respectively. Cross-

attention operates over the output of the last self-attention
step but aggregates information across images, yielding a
new set of features zℓ+1

A , zℓ+1
B .

In query, key, value notation our attention function can
be described as a variant of the classic formulation:

Attention(Q,K,V) = softmax(
QKT

√
D

)V (2)

where in the cross-attention layers, the keys and values orig-
inate from the aggregated features zj of a target image and
the queries originate from the aggregates features originat-
ing from a reference image zi. In the self-attention layers,
the queries, keys, and values all originate from the same
source features zi. It is important to note that reference and
target are relative terms – target just denotes the other im-
age with respect to the reference image. In our architecture,
both directions of cross-attention are happening simultane-
ously. From the perspective of image A, image B is the
target and from the perspective of image B, A is the tar-
get. An overview of the self and cross-attention blocks is
illustrated in Figure 6.

Similar to the original transformer implementation, the
multiplex transformer is made up of stacked transformer
blocks that each consists of a multi-headed attention layer
followed by a point-wise fully connected layer. We alternate
between self and cross-attention in the transformer blocks
and add residual connections between each block. The fi-
nal matching features are computed by the output of the last
transformer block and a final linear projection layer, yield-
ing final features zLA ∈ RM×D and zLB ∈ RN×D.

3.2. Matching

AnT learns a similarity matrix between the aggregated
reference and target features from the multiplex transformer
and then predicts the target label with a weighted sum of all
the labels in the reference frame. We compute the predicted
target labels ĉj ∈ RN as a linear combination of the labels
ci ∈ RM in the reference frame:

ĉj =

M∑
i=1

Sijci (3)

Figure 6: The blue and purple circles in a), represent the
center of the segments in each line image. The self- and
cross-attention blocks in b) show how attention can be com-
puted between segment features from the same image or
across images. In our architecture, we have used an inter-
leaved approach of self- and cross-attention combined with
skip connections between each transformer block as it is de-
picted in c).

.

where Sij is a similarity matrix between the target and ref-
erence frame such that the rows sum to one. As in [32], we
use inner product similarity normalized by softmax:

Sij =
exp

(
fTi fj

)∑M
i=1 exp

(
fTi fj

) (4)

where fi ∈ RD is the feature vector corresponding to the
segment at index i in zLA and fj ∈ RD is the feature vector
corresponding to the segment at index j in zLB.

3.3. Loss

In order to be able to learn from both correspondence
and color labels, AnT employs two loss functions that can
be used independently or averaged together depending on
the label source.

Forward match loss: To encourage the model to directly
use the correspondence or color labels, we use categorical
cross-entropy loss between the predicted target labels ĉj
and the cj ground truth target labels from the dataset. In
cases where we have correspondence labels, both the tar-
get labels cj and the reference labels ci used as input to the
weighted average calculation are unique and thus the model
directly minimizes incorrect correspondences. However, in
the case of color labels, ci and cj are non-unique and the
model only minimizes incorrect color assignments. This
leads to the model learning to shortcut and find matches that
yield the correct color assignments but are incorrect corre-
spondences (see Figure 7).



Figure 7: The cycle consistency loss allows the model to
utilize real world animation data without ground truth cor-
respondences. An example scenario is shown in which the
second target segment is incorrectly matched in the forward
propagation but the model is not penalized by the color
matching loss because both the predicted segment color la-
bel and the ground truth color label have the same color. To
solve this, we propagate unique segment IDs through the
forward pass and then back again to the reference image
segments, enabling our cycle consistency loss to penalize
the model according to whether the propagated IDs match
their original values.

Cycle consistency loss: In order to solve the previously
mentioned issues, we employ a cycle consistency loss that
prevents the model from learning to shortcut in cases where
we have non-unique color labels. Instead of using the refer-
ence labels from the dataset, we initialize a random vector
of unique segment IDs ri ∈ RM and use these in place of
ci for the weighted label aggregation:

r̂j =

M∑
i=1

Sijri (5)

We then propagate the predicted target labels r̂j in the back-
ward direction:

r̂i =

N∑
j=1

Tij r̂j (6)

where T is the backward correlation matrix computed by:

Tij =
exp

(
fTj fi

)∑N
j=1 exp

(
fTj fi

) (7)

As with the forward match loss, we use categorical cross-
entropy loss between the randomly initialized segment IDs
ri and the predicted segment IDs r̂i propagated over the

entire cycle. Our final loss term with both losses is:

L =

N∑
j=1

Lfwd (ĉj , cj) + α

Q∑
i=1

Lcyc (r̂i, ri) (8)

where Lfwd is the forward matching loss, Lcyc is the cycle
consistency loss, and α is a hyper-parameter that weights
the cycle consistency loss. In our experiments we use both
losses with α = 0.25.

4. Experiments

4.1. Dataset details

Synthetic Dataset: To train AnT with ground truth seg-
ment correspondence labels, we generate a synthetic dataset
in Cinema4D using freely available 3D models. We render
realistic looking line images using a toon shader and gener-
ate the segment correspondence labels by assigning unique
IDs to individual meshes. The characters are rigged with
different movements, deformations, and rotations to sim-
ulate actual animation. We use 11 3D character models
from TurboSquid and generate 1000 frames at 1500x1500
pixel resolution for each character, yielding 11000 frames
in total. During training, we apply random frame skipping
and other augmentation techniques such as cropping, jitter-
ing, and shearing. The characters range in complexity from
some characters with as few as 10 segments to others with
as high as 50. We create our evaluation set by randomly
selecting sequences for a total of 1100 frames (10% of the
dataset), uniformly split across each character.

Real Dataset: As a medium, hand-drawn animation is
much more diverse and expressive than its 3D counterpart.
Since animators are not confined to the limits of a 3D pro-
gram, hand-drawn animation encompasses a much broader
set of animation styles and character designs. For any vi-
sual correspondence model to work in the wild on a variety
of animation styles, it cannot only be trained on synthetic
data from 3D programs. To solve this, we collect a dataset
of high resolution hand-drawn animation from 17 different
real-world animation productions, totalling 3578 frames.
The animation style of each production varies greatly, al-
though the style is closer to U.S. and European animation.
The dataset is extremely diverse, with hundreds of differ-
ent characters. Importantly, the real dataset does not have
unique correspondence labels; we use the segment colors
in the colorized images to extract labels. In contrast with
the synthetic dataset, this yields non-unique numeric seg-
ment labels. We create our evaluation set by randomly se-
lecting sequences 25 variable-length sequences uniformly
across each production. For 5 sequences in the evaluation
set, no training data from the originating production exists
in the training set at all.



4.2. Implementation details

Training details: We train AnT using the AdamW opti-
mizer with and a learning rate of 5e-4, weight decay of 1e-
4, gradient clipping at global norm 1. We use a learning rate
warmup of 1K steps, and train for 100k iterations with no
learning rate decay. AnT is trained with an effective batch
size of 64 using gradient accumulation over 4 batches of 16
image pairs each. The transformer has input and attention
dropout of 0.1, which we found helpful for regularization.
Unless otherwise specified, we train AnT with L = 9 lay-
ers of alternating multi-head self- and cross-attention with
4 heads each and D = 256 dimensional local features.

Time and memory complexity: A single forward pass
of AnT takes on average 76ms (13 FPS) on a Nvidia Tesla
V100 GPU. Using M and N to denote the number of ref-
erence and target segments, each cross attention layer AnT
has to make O(MN) comparisons and each self attention
layer AnT has to make O(M2+N2) comparisons. By com-
parison, a forward pass of DEVC takes on average 147ms
(6 FPS). Memory-wise, DEVC has to make O((HW )2)
comparisons, where H ,W are the spatial dimensions of the
CNN features. We were limited to using a batch size of 3
for DEVC, whereas we could use a batch size of 64 for AnT,
yielding much faster training. Our leak-proof filling method
implemented in OpenGL takes on average 1.4s on the same
hardware, yielding a total inference speed of 2.16s for AnT
or 2.87s for DEVC.

4.3. Comparisons

Baselines: We compare the performance of AnT to both
the vanilla implementation of Deep Exemplar Video Col-
orization (DEVC) [32] as well as variants of DEVC with
domain specific modifications. DEVC is a state-of-the-art
video colorization network that operates on the pixel-level
and matches features with a deep neural network. To use
DEVC in our tasks, we use only the correspondence subnet
and use the categorical cross-entropy loss on the colorized
warped image. We then generate a predicted segment label
for each segment by a non-learned post-processing step: we
take the maximally occurring color in each of the segment
locations on the warped image.

Since DEVC is a pixel-based approach, we create two
variants with domain specific enhancements that take ad-
vantage of the problem structure. Since small segments are
the hardest to predict, we weight the loss of each pixel in
the warped image output inversely proportional to the size
of the segment corresponding to that pixel location. This
helps prevent the network from unknowingly focusing on
large segment areas while ignoring smaller ones. We refer
to this network as DEVC (Weighted Loss).

We also observed that high resolution is important for
performance. We introduce the local attention mechanism

used in [11] in place of global attention to enable training
at higher resolutions. This model is referred to as DEVC
(Local Attention). We train DEVC and DEVC (Weighted
Loss) at 512x512 pixel resolution with batch size of 2 until
convergence. We train DEVC (Local Attention) at 640x640
pixel resolution also with a batch size of 2 until conver-
gence.

Figure 8: Starting from a reference color and line images i.e.
cref and lref , we recursively propagate the colors of each
generated image ci to colorize every incoming line image
li+1.
Metrics: To measure correspondence across sequences,
we recursively propagate segment labels over 10 frames as
illustrated in Figure 8, using a single ground truth refer-
ence frame to seed the colors for the rest of the predictions.
We use per-segment label accuracy and mean Intersection-
Over-Union averaged over the label classes as our evalua-
tion metrics.

Results: We show qualitative results in Figure 9 and results
of comparing AnT to DEVC in Table 1 on both the synthetic
and real datasets. The synthetic column is evaluated on the
ground truth segment correspondence labels, while the real
dataset is evaluated on the non-unique color labels.

Synthetic Real
Accuracy Mean IoU Accuracy Mean IoU

DEVC 66.19 43.17 42.86 29.37
DEVC (Weighted Loss) 79.92 55.98 61.86 38.05

DEVC (Local Attention) 84.11 62.60 57.34 32.98
AnT (Ours) 92.17 72.90 79.38 45.38

Table 1: Evaluation on Correspondence (Synthetic) and
Colorization (Real). AnT strictly outperforms all the base-
lines, even after segment-specific modifications are added.
The real dataset contains chunkier motion that moves out-
side the field of view in DEVC (Local Attention)

4.4. Model Ablation Study

We pull apart several key components of AnT to show
how performance changes when these components are re-
moved (see Table 2). The transformer is highly corre-
lated with performance, which shows that the global fea-
ture aggregation helps learn effective representations. Sim-
ilarly, spatial information is also necessary for AnT to rea-
son about the segment structures effectively. When cycle-



Figure 9: AnT is effective at colorizing complex scenes with occlusion, small segments, and complex deformations. In the
bottom left example, AnT fails to colorize the yellow sleeve because it was not present in the reference line image. We
encourage readers to look at the Appendix for additional results.

consistency is removed in the model trained on the real
dataset, the model avoids learning generalizable correspon-
dences – it ”cheats” by matching non-corresponding seg-
ments with the same color.

Synthetic Real
Accuracy Mean IoU Accuracy Mean IoU

No transformer 78.56 67.82 65.91 39.53
No positional embedding 81.88 67.23 68.23 40.20

No cycle consistency 91.49 71.01 68.48 41.10
Smaller (3 layers) 88.03 69.90 76.09 44.02

Full (9 layers) 92.17 72.90 79.38 45.38

Table 2: Model Ablation study. Comparison of different
model variants in AnT.

4.5. Training Data Ablation Study

In order to assess AnT’s ability to learn without ground-
truth correspondence labels, we perform an ablation study
(see Table 3) across 3 different training sets: synthetic, real,
and mixed (which is simply the sum of synthetic and real).
As in the earlier section, the synthetic and real columns de-
note the evaluation set with the same metrics as before. No-
tably, we see that when AnT is trained on the real dataset,
its performance on the synthetic correspondence dataset ap-
proaches that of when it has access to correspondences at
training time. The real dataset is much more challenging
and diverse, leading to a more robust model that can predict
correspondences on the less challenging synthetic dataset.
The inverse is not true; when the model trained on only syn-

thetic data is evaluated on real, a bigger performance differ-
ential exists. We hypothesize this is because the synthetic
dataset lacks diversity and challenge.

Synthetic Real
Accuracy Mean IoU Accuracy Mean IoU

Synthetic 92.17 72.90 72.55 39.93
Real 89.46 70.20 79.38 45.38

Mixed 94.25 77.27 79.84 51.64

Table 3: Training Data Ablation Study. While the best
results on synthetic come from the mixed training set, when
AnT is only trained on the real dataset its performance ap-
proaches that of the model trained on correspondence la-
bels.

5. Conclusion
In this paper, we have shown that segment is an effective

structure for learning visual correspondence on hand-drawn
images. Our results show our method’s ability to leverage
real-world animation datasets that are crucial for learning
accurate correspondences on a wide variety of animation
styles.

We hope this work encourages more research into prac-
tical, data-driven creative tools for animation. Although we
focused on flat-filled animation in this work, our method
can be extended to other tasks such as propagating shadows
and texture or predicting optical flow.
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Appendix

In the following pages, we present additional back-
ground information, experimental details, qualitative exam-
ples of AnT in action, user study results, as well as visual-
izations and analysis of the learned attention patterns.

A. Industry standards in animation

To understand the motivation behind AnT, it is impor-
tant to consider how hand-drawn animation is produced at
studios today. The vast majority of animation is produced
at HD (1080 x 1920) or beyond resolution on digital draw-
ing tablets or scanned in from pencil drawings. Once it is
converted to a uniform line drawing (also known as a clean
line), artists colorize by clicking on each individual line en-
closure (segment) with a uniform color and flood filling it
with a color. This painstakingly laborious process can take
on the order of minutes per frame to do manually for com-
plex animation.

The traditional style of flood filling each line enclosure
has been around since the dawn of animation and contin-
ues to be the de facto standard because it allows the artist to
quickly color many images in a short amount of time. For
an assistive colorization tool to be effective in this domain,
it is crucial that it integrates easily with this workflow and
thus produce predictions at the level of segments. By do-
ing so, this also enables the artist to manually intervene and
correct any mistakes with the existing flood fill tool they are
accustomed to.

B. Pitfalls of pixel-based approaches

One approach is to combine the output of a pixel-based
model with flood fill segmentation information and choose
the maximally occurring color in each segment. We ex-
plored this approach and highlight several issues that can
occur.

In Figure 10 we use the popular open-source coloriza-
tion model PaintsChainer and provide a color hint for every
segment. The model is trained with an MSE loss in RGB
space, so it learns to predict colors that are close to the
user-provided color palette. When multiple colors are used,
it quickly starts mixing the reference colors and diverging
from the user-specified color palette.

To overcome the color mixing issue we can train a pixel
model with categorical cross entropy loss by discretizing
the input color palette into a compact label space. We use
this approach with the correspondence network in Deep Ex-
emplar Video Colorization (see Figure 11). The resulting
output stays true to the provided color palette, but the model
loses important details due to input downsampling and max-
pooling in the CNN backbone (both of which are necessary
to compute pixel attention on a 16GB GPU). We use DEVC

Figure 10: Color mixing in PaintsChainer.

in our benchmarks, but convert the pixel output to segment
labels for evaluation.

Figure 11: Raw output of the correspondence subnet-
work of DEVC.

C. Choice of evaluation metrics
Given that our task is to output predictions at the level

of segments, how do we measure performance? Existing
metrics for pixel-based tracking and colorization tasks are
not suitable: a practical metric would roughly approximate
how many corrections an animator would need to make to
correct any inaccurate predictions. Since the artists make
corrections at the level of segments, this begs the need for
segment-level evaluation metrics. Thus, we define two eval-
uation metrics that are specifically suited for the task: Ac-
curacy and Mean IoU. We describe each of these in detail
and discuss their connection with other evaluation metrics
in colorization and tracking.

Accuracy is defined as the percentage of correct segment-
level label predictions averaged over all segments in each
of the target sequences. In colorization, this is somewhat
analogous to MSE in RGB color space – we want to predict
the right color label and penalize incorrect colors. However,
unlike in photo-realistic colorization we are predicting from
a discrete set of labels.

Mean IoU is defined as the mean Intersection-over-Union
for each segment averaged over all segments in the target



sequence. In the video segmentation context, our Mean IoU
metric is analogous to Region Similarity J . However, in-
stead of measuring the similarity between pixel regions we
are measuring in the level of segments.

D. User study

To evaluate our approach we conducted a user study. We
ask professional artists to colorize sequences (see Figure
12) from the real dataset without and with the assistance
from AnT. In the test with Ant, we colorized the sequences
with AnT then asked users to check and correct incorrect
parts in the results. All tests were done in professional soft-
ware, and we record users’ interactions and work time. The
summary result is shown in Table 4. We can see that AnT
significantly increases the work efficiency.

E. Qualitative results

Comparison with other methods In this section, we show
results of our proposed approach (AnT) to: DEVC, Lazy
Brush, EBSynth, Style2paints. LazyBrush fails to handle
large movements but fills segments with a uniform color,
making it suitable for animation workflows. EBSynth sim-
ilarly degrades with large movements but is not segment-
aware so it blends pixels together. Style2paints is not suit-
able for animation colorization task.

Additional results: In Figure 14 we show qualitative ex-
amples of a variate set of sequences colorized with AnT and
DEVC. In the same way that previous qualitative examples,
these colorization sequences have been created following a
recursive propagation of colors, using each colorized image
as input for the next generation (as described in figure 8 in
main body). AnT presents superior performance especially
when dealing with ambiguous segments and occlusions. In
Figure 15 we show results from line drawing with gaps.

F. Inspecting Attention in AnT

In Figure 16 we present the attention patterns formed in
the attention layers of the transformer module at different
stages. The visualizations are created for the case where tar-
get segment features are updated, i.e. self-attention is com-
puted between segments from the target image and cross-
attention aggregates segment information from the refer-
ence image to each target segment. The opacity of green
lines represents the attention weight between a target seg-
ment and each segment from the contrary image. For ex-
ample, in the first-row of self-attention, the segment A has
small attention weights towards multitude of other target
segments while in the last row of cross-attention its atten-
tion is mainly focused on the correct correspondence from
the reference image.

Selected segments: We have chosen two segments where
our model correctly found correspondences in situations
where more than just visual information was necessary.
In these cases, the spatial and structural information pro-
vided by the positional encoder and the transformer was
key to disambiguate correct correspondences from wrong
matches. We show the robustness of AnT to occlusions
with segment A and its ability to find the correct correspon-
dences in ambiguous scenarios with B (which shares visual
resemblance with its neighboring segments).

Attention patterns: From our experiments, we can appre-
ciate how attention focuses on gathering information from
lots of segments from the contrary images in early layers.
We argue that segment representations get benefited from
attending a large number of segments all around the image
to get a sense of the global structure of the scene and its rel-
ative distances with other segments. Towards the later lay-
ers, attention gets progressively narrowed towards the most
important elements to represent each segment. This is im-
portant to disambiguate between similar segments. For ex-
ample, in the latest row of the cross-attention layer, both
segments still gather information from enclosures close to
them such as the hand for A or other pills for B.



Case Human AnT+Human Interactions
(AnT+Human / Human)

Time
(AnT+Human / Human)Mouse click Key down Interactions Time (s) Mouse click Key down Interactions Time (s)

A 180 629 809 174.10 31 16 47 56.16 5.81% 32.26%
B 402 1013 1415 429.53 93 206 299 119.57 21.13% 27.84%
C 365 1497 1862 369.09 131 700 831 140.85 44.63% 38.16%
D 605 897 1502 550.23 138 551 689 169.93 45.87% 30.88%
E 2151 5058 7209 1826.52 90 167 257 169.70 3.56% 9.29%
F 280 849 1129 237.22 79 270 349 91.41 30.91% 38.53%

Table 4: User study result. Comparison of user effort on colorization task without/with assistance from AnT. ”Mouse click”
interactions mainly include switching, moving, and zooming the canvas, filling, and picking colors. ”Key down” interactions
mainly include toggling tools, file operations, undo/redo.

A (9 frames) B (7 frames) C (9 frames) D (9 frames) E (9 frames) F (9 frames)

Figure 12: Samples from sequences used in the user study.
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Figure 13: Comparison with other methods.



Reference Colorized Sequence
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Figure 14: Qualitative results for AnT and DEVC. Zoom in to view in more detail.



Figure 15: Our method can handle line drawings with gaps. Zoom in to view in more detail.



Figure 16: Self- and cross- attention layer visualizations for two segments. The locations of segments A and B are shown
in the top left-hand corner.


